Warunki w logarytmie: \(a>0\) i \(a\neq1\) i \(c>0\)Dla postaci: \(\log_{a}c=b\Leftrightarrow a^b=c\)Poniżej zamieszczamy wzory i właściwości logarytmów. \(a^{\log_{a}c}=c\)dla dowolnych x>0, y>0 oraz r zachodzą wzory: \(\log_{a}(x\cdot y)=\log_{a}x+\log_{a}y\)\(\log_{a}x^r=r\cdot \log_{a}x\)\(\log_{a} \left ( \frac{x}{y} \right )=\log_{a}x-\log_{a}y\)Wzór na zamianę podstawy logarytmu: Jeżeli \(a>0\), \(a\neq 1\), \(b>0\), \(b\neq 1\) oraz \(c>0\), to \(\log_{b}c=\dfrac{\log_{a}c}{\log_{a}b}\)Z powyższego wzoru wynika: \(\log_{b}c=\dfrac{1}{\log_{c}b}\)Pozostałe właściwości: \(\log_{a}1=0\)\(\log_{a}a=1\)\(\log_{a}a^b=b\)Oznaczanie logarytmów: \(\log x\) oraz \(\lg x\) oznacza \(\log_{10} x\); \(\ln x\) oznacza \(log_{e} x\), gdzie \(e\) to stała wynosząca \(e=2,71828182\cdots \); Przykładowe Oblicz wartość logarytmów: a) \(\log_{2} \dfrac{1}{2}\)b) \(\log_{5} \dfrac{1}{5}\)c) \(\log_{7} \dfrac{1}{49}\)d) \(\log_{3} \dfrac{1}{81}\)e) \(\log_{2} \dfrac{1}{16}\) Zobacz rozwiązanie Zad. 2) Oblicz wartość logarytmów: a) \(2\log_{16} 4\)b) \(3\log_{27} 3\)c) \(10\log_{32} 2\)d) \(-4\log_{\frac{1}{25}} 5\)e) \(6\log_{2} 2\) Zobacz rozwiązanie Zad. 3) Oblicz wartość logarytmów: a) \(3^{\log_{3} 8}\)b) \(6^{\log_{6} 19}\)c) \(8^{2\cdot \log_{8} 3}\)d) \(4^{\log_{2} \sqrt{7}}\) Zobacz rozwiązanie Zad. 4) Oblicz wartość logarytmów: a) \(\log_{14} 7+\log_{14} 2\)b) \(\log_{9} 27+\log_{9} 3\)c) \(\log_{4} 2+\log_{4} 8\)d) \(\log 25 +\log 4 \)e) \(\log_{7} \dfrac{1}{3}+\log_{7} 3\) Zobacz rozwiązanie Zad. 5) Oblicz wartość logarytmów: a) \(\log_{3} 6-\log_{3} 2\)b) \(\log_{2} 12-\log_{2} 3\)c) \(\log_{7} 28-\log_{7} 4\)d) \(\log_{5} 100-\log_{5} 4\)e) \(\log_{12} 24-\log_{12} 2\) Zobacz rozwiązanie Zad. 6) Oblicz wartość logarytmów: a) \(2\log_{6} 3+\log_{6} 4\)b) \(\log_{4} 25-2\log_{4} 3\)c) \(\log_{7} 392-3\log_{7} 2\)d) \(2\log_{72} 3+3\log_{72} 2\)e) \(2\log_{80} 4+\log_{80} 5\) Zobacz rozwiązanie Zad. 7) Oblicz wartość logarytmów: a) \(\log_{2} 2^4\)b) \(\log_{5} \dfrac{\sqrt{5}}{5}\)c) \(\log_{7} \dfrac{7\sqrt{7}}{\sqrt{7^3}}\)d) \(\log_{4} \dfrac{\sqrt[3]{4}}{\sqrt[5]{4}}\)e) \(\log 10\sqrt[3]{10} \) Zobacz rozwiązanie Zad. 8) Oblicz wartość logarytmów: a) \(\log_{4} 2\)b) \(\log_{36} 6\)c) \(\log_{\frac{1}{5}} 25\)d) \(\log_{81} 27\)e) \(\log_{\frac{1}{3}} 3\sqrt[7]{3}\) Zobacz rozwiązanie
Znajdź odpowiedź na Twoje pytanie o Oblicz : a) 6+(-4)+(-10) -4-(-9)-3 -16+7-28 b) 4,3-7,4+1,1 (-6,2)+1,6-(-2,3) 7,8-5,4-12,1 c) minus jedna cała 1/3-2/9+1/6 je…${4}^{6}=?$${4}^{6}$${4096}$1. 2/3 2. ze skróceniem=1/2 3.ze skróceniem=1/3 4.ze skróceniem =1/4 5. to 30 człych i 1/3 =15/5 i 1/3 6. to ze skróceniem 2/7 NIE JESTEM PEWNY BO JA NA DIAGRAMACH Z 6 KL I 30 % DOBRZE TTYLKO JEST Oblicz kwartyle Z populacji generalnej pobrano n = 50-elementową próbkę i przebadano ze względu na cechę X. Otrzymano wyniki: 3,6, 5,0, 4,0, 4,7, 5,2, 5,9, 4,5, 5,3, 5,5, 3,9, 5,6, 3,5, 5,4, 5,2, 4,1, 5,0, 3,1, 5,8, 4,8, 4,4, 4,6, 5,1, 4,7, 3,0, 5,5, 6,1, 3,8, 4,9, 5,6, 6,1, 5,9, 4,2, 6,4, 5,3, 4,5, 4,9, 4,0, 5,2, 3,3, 5,4, 4,7, 6,4, 5,1, 3,4, 5,2, 6,2, 4,4, 4,3, 5,8, 3,7. Sporządzić dla danej próbki szereg rozdzielczy. Dla danej próbki zbudować szereg rozdzielczy przedziałowy i obliczyć kwartyle. I tu zaczyna się problem. Bo nie mam zielonego pojęcia jak. Mam podany wzór jakiś ale jak podstawiam to wychodzi mi na minusie. Czy mógłby ktoś pomóc?
Co to jest mediana? Mediana (wartość przeciętna lub 2 kwartyl) – miara centralna leżąca dokładnie w środku uszeregowanych obserwacji, tzn. 50% obserwacji leży na lewo od niej i 50% leży na prawo od niej. \(\) Co możemy zapisać następująco: \( P(X \leq Me) \geq \) oraz \( P(X \geq Me) \geq \) gdzie Me to wartość mediany Wzory na medianę: Najczęściej wykorzystywany wzór na medianę to: \( Me = \begin{cases} \frac{1}{2}(X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) , & n\mbox{ – parzyste} \\ X_{\frac{n+1}{2}}, & n\mbox{ – nieparzyste} \end{cases} \) Mediana w szeregu przedziałowym \( \large Me = X_{Me}+ \frac{ \frac{n}{2} – n_{Me sk – 1} }{n_{Me}} \cdot h_{Me} \) \( \large Me = X_{Me}+ \frac{ – \omega_{Me sk – 1} }{\omega_{Me}} \cdot h_{Me} \) \( X_{Me} \) – lewy koniec przedziału z Medianą \( n_{Me} \) – liczebność przedziału z Medianą \( \omega_{Me} \) – częstość przedziału z Medianą \( n_{Me sk-1} \) – liczebność skumulowana przedziału przed przedziałem z Medianą (suma obserwacji we wszystkich przedziałów przed przedziałem z medianą) \( \omega_{Me sk-1} \) – częstość skumulowana przedziału przed przedziałem z Medianą (suma częstości we wszystkich przedziałów przed przedziałem z medianą) \( h_{Me} \) – długość przedziału z Medianą Jak wyznaczyć przedział z medianą? Dla szeregu ilościowego: Liczymy liczebność skumulowaną \( n_{isk} \) dla każdego przedziału. Mediana znajduje się w pierwszym przedziale, dla którego \( \frac{n}{2} \leq n_{isk} \) Dla szeregu częstości: Liczymy częstość skumulowaną \( \omega_{isk} \) dla każdego przedziału. Mediana znajduje się w pierwszym przedziale, dla którego \( \leq \omega_{isk} \) Przykład: \( X_{i} \) 1-44-77-1010-13 \( n_{i} \)102058 \( n = 10 + 20 + 5 + 8 = 43 \) \( \frac{43}{2} = \) Policzmy liczebność skumulowaną \( n_{isk} \) \( X_{i} \) 1-44-77-1010-13 \( n_{i} \)102058 \( n_{isk} \)1010 + 20 = 3010 + 20 + 5 = 3510 + 20 + 5 + 8= 43 30 jest pierwszym \( n_{isk} \) dla którego \( \leq n_{isk}\) Mediana znajduje się w przedziale 4-7. Ważna uwaga dotycząca mediany: Przed znalezieniem mediany należy uszeregować rosnąco obserwacje bo tylko wtedy będziemy mogli poprawnie wyznaczyć medianę. Zobacz również: Graficzne przedstawienie mediany Porównanie mediany, średniej i dominanty Jak obliczyć medianę przykład Oblicz medianę dla obserwacji: 1, 2, 3, 2, 3, 6 Najpierw uporządkujemy obserwacje: 1, 2, 2, 3, 3, 6. Mamy n=6 obserwacji. n jest parzyste więc skorzystamy ze wzoru: \( Me = \frac{1}{2}(X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) \) \( X_{\frac{n}{2}} = X_{3} = 2\) \( X_{\frac{n}{2} +1} = X_{4} = 3 \) \( Me = \frac{1}{2}(X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) = \frac{1}{2}(2+3) = Odp: Mediana z obserwacji wynosi Gdzie wykorzystywana jest mediana? Mediana jest często wykorzystywana przy analizie rozkładów. Zaletą jest większa odporność na obserwacje odstające niż w przypadku średniej. Więcej można poczytać tutaj. Mediana zarobków Powyższą różnicę można zaobserwować licząc medianę i średnią miesięcznych zarobków w Polsce, tj. średnia wynosi około 4800 brutto natomiast mediana wynosi około 2800 brutto. Co oznacza, że w rozkładzie zarobków Polaków są Polacy, którzy zarabiają bardzo dużo przez co średnia jest zawyżona względem mediany. Wartość mediany oznacza również, że 50% Polaków zarabia co najwyżej 2800zł brutto oraz 50% Polaków zarabia co najmniej 2800zł brutto. Zadania na medianę Zadanie 1 Oblicz medianę dla podanych danych: 1, 4, 6, 7, 5, 9, 7, 7, 8 Dalsza część treści jest płatna. Dokonaj zakupu lub zaloguj się Regulamin dostępny tutaj Zaloguj się lub Wykup Sprawdź Wykup Anuluj 30dniowy abonament, 49złDostęp do końca sesji ( 59zł30 dni, wszystkie treści + automatyczne rozwiązywanie zadań, 99złDostęp do końca sesji ( wszystkie treści + automatyczne rozwiązywanie zadań, 109zł Anuluj Zadanie 2 Określ medianę wśród ocen uczniów ze sprawdzianu z fizyki: 3, 4, 2, 3, 2, 3, 5, 3, 6, 2, 1, 2. Treść dostępna po zalogowaniu Zadanie 3 Określ medianę wśród danych: , 6 , 3 , 4 Treść dostępna po zalogowaniu Zadanie 4 Oceny z klasówki zostały przedstawione w poniższej tabeli: Ocena12345 Liczba uczniów251087 Oblicz medianę. Treść dostępna po zalogowaniu Zadanie 5: Rozkład pewnej cechy jest dany w poniższej tabeli. Oblicz medianę. Wartość \( X_{i} \)123456 Ilość \( n_{i} \)144111 Treść dostępna po zalogowaniu Zadanie 6: W tabeli zostały przedstawione zarobki w firmie informatycznej. Oblicz medianę: Wartość \( X_{i} \) (w tys. zł)1-33-55-77-99-11 Ilość \( n_{i} \)231071 Treść dostępna po zalogowaniu Zadanie 7: W tabeli zostały przedstawione zarobki w firmie. Oblicz medianę: Przedział zarobków (w tys. zł)1-33-55-77-99-11 % pracowników\( \frac{2}{23} \)\( \frac{3}{23} \)\( \frac{10}{23} \)\( \frac{7}{23} \)\( \frac{1}{23} \) Treść dostępna po zalogowaniume1N.